Source code for ice.anomaly_detection.utils

from tqdm.auto import tqdm
import pandas as pd
from torch.utils.data import Dataset
import numpy as np


[docs]class SlidingWindowDataset(Dataset): def __init__(self, df: pd.DataFrame, window_size: int, target: pd.Series = None): self.df = df self.target = target self.window_size = window_size window_end_indices = [] run_ids = df.index.get_level_values(0).unique() for run_id in tqdm(run_ids, desc='Creating sequence of samples'): indices = np.array(df.index.get_locs([run_id])) indices = indices[self.window_size:] window_end_indices.extend(indices) self.window_end_indices = np.array(window_end_indices) def __len__(self): return len(self.window_end_indices) def __getitem__(self, idx): window_index = self.window_end_indices[idx] sample = self.df.values[window_index - self.window_size:window_index] if self.target is not None: target = self.target.values[window_index] return sample.astype(np.float32), target return sample.astype(np.float32)