{ "cells": [ { "cell_type": "markdown", "id": "d5da40d2-3c0c-4b29-a76b-cc8f1eda522b", "metadata": {}, "source": [ "# Fine-tuning tutorial" ] }, { "cell_type": "code", "execution_count": 1, "id": "40bc898a-3bf8-4e44-92d8-4aa0ef2ac2c4", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "from sklearn.preprocessing import StandardScaler\n", "\n", "from ice.anomaly_detection.datasets import AnomalyDetectionSmallTEP\n", "from ice.anomaly_detection.models import AutoEncoderMLP" ] }, { "cell_type": "markdown", "id": "6286210b-a2c3-40de-af44-b2d08d521efd", "metadata": {}, "source": [ "Create the model and dataset." ] }, { "cell_type": "code", "execution_count": 2, "id": "0d43bd9b-ff48-4943-bdde-1a95d5e289ca", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ed014042c3e7427b84c942f120fb6e0a", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Reading data/small_tep/df.csv: 0%| | 0/153300 [00:00