{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "ScUlcCzL6lso" }, "source": [ "# Results of anomaly detection using AutoEncoderMLP-256" ] }, { "cell_type": "markdown", "metadata": { "id": "0AwvypL47HEj" }, "source": [ "This notebook presents experimental results of anomaly detection on the Tennessee Eastman Process dataset using the model AutoEncoderMLP-256." ] }, { "cell_type": "markdown", "metadata": { "id": "NTwVP4MW6qw3" }, "source": [ "Importing libraries." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "id": "mEsTIAZQSedM" }, "outputs": [], "source": [ "import numpy as np\n", "import torch\n", "from sklearn.preprocessing import StandardScaler\n", "from tqdm.auto import trange\n", "from ice.anomaly_detection.datasets import AnomalyDetectionReinartzTEP, AnomalyDetectionSmallTEP\n", "from ice.anomaly_detection.models import AutoEncoderMLP" ] }, { "cell_type": "markdown", "metadata": { "id": "YM554ghK6yHr" }, "source": [ "Downloading the TEP dataset." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 241, "referenced_widgets": [ "e0307c5091b4440f874d9b9bdf1790b9", "84e7822ce517406886984646669be06b", "cf2e885a1b9f4d438db9822bb9118388", "423b926f403b4ca69c031331f288dfa7", "7dcaf7c74ce24b89baaf500c34a6b4ba", "fd1cdd84500741a99df31ffe017ff5b6", "5bcca7b71d654903b8f997fdbf7c871d", "97c8a51d512c4599889e90e5fd43fbb1", "e1c5e2ebe7dd4eb48656454ef38b05ee", "21b7d5b0f7ac492cae33dcafd8300184", "800b36c717d84df39decdad93009980b", "00717a9df6994d7b8702d2b190cb15eb", "0a8c57546d44483a86293030d389a819", "1928a7358043453aba3072f6e5e1944e", "5a71e9629d3a4935ad1034f01b1cdb9b", "7346141c2410402bb687088d2b24864e", "81f0fde6b5664925a690eae75d31d002", "6f63739b4d4046b9845c9ba2c29b3c3d", "c15e1e1e505e4f84be90e657ed1dc0fd", "d395250b76714cfbafad25574e76b3a6", "f070782bc5274e06b24efa2d259c36ef", "2c6dea17ade0462fae404a7e74cf1e24", "38851b785a784ff586de4753a4259e96", "187d422989d3481191e914056f360a1e", "1122a594dba841c19aa0467d7d141341", "2f803651ba76461fa6e756456454c98f", "936d2f0c0c2f4ffa84c98d9bc1b86599", "20405bff702c48f5a8d2fa3e2e9afe48", "e20964a9d69049fd93a9104dabab7eec", "6e916cf24d184853ac28c97c51e71c82", "1b874ec014db4eacbcebde46784fbed6", "bae1af478f3b46ec8f385e8ca08a6bda", "3782ab4e7c4845d69e4607c6b383ee62", "462c112bebd94852b0f081c9081aa1b6", "04163d11ea2e4a8cbbbfb0635d5f7466", "107ff0b1dcf740d7a641bb4035a83279", "f57539b930754eb8bb67c958c4b132f2", "bbbc8e9bef3e46b7ab2b1b6fce9d1f5b", "151e5c960e1f488b9ee59952e901e858", "a1bf51dd6a2f4036844455be0231d9e5", "29499c6e9aa9404887b76f75f44b184a", "789efcf85e4f4954a4e8f0f721216d4c", "6f4665bcecdd45c98b050108b8b98e46", "e06b4918d95d4da1bb7733fff9324d9e", "432609aa7ce54534ac8825986671fe95", "047d3d9fed194b3181c73a9857f2a97b", "4c89a1d9d3fd4f8292d94ebe5a0e9594", "1c5fa72e375847c3b80422db2087b3bb", "032f8d15551940fc8616dab437cd9646", "80abd98b9ee74f74af5008c572dc62f6", "229c0efe3c5e49f7861fa993054cdff5", "d109fdd7ed5746ca830b744750ab3773", "8b65162d54c24725b2f04b3bd73bfc7d", "66f5ae224a1048288532d8e44fca4d2e", "73940adcb4e24393a88ecf153c7d74a7", "e58014e4f6e74eb38ca5efa8ecb1029c", "d9cbc701c3d14a5797ab8d071e54ac4c", "72a68bc3793748dca0a7a3bf7f3d9fb5", "0175e4d6b23d4e74a48972bde5486150", "49a6c469f5b249718154cb13e4461d15", "9597197b8b2d48d89c9e06cf2bd6357a", "9c95c1cc258844a482778497ca7ce406", "fae65ef650884177ab98842f5cf57a71", "4bee42f1617842048289419772feb16c", "7002a27e63c44b668b0236f9cb4cd4de", "d9350d98987f4c4b986b1f5336707768", "b124305e8b5648129865d94f1cc43dc2", "320dceb1139a49f1979afdfe0c631b4a", "9dc613188d1a43dbadc612a9f64a542a", "6378fc1b25d54d6dbea32e997590389a", "146fc89899974088b01cf48213c4ab17", "849dd65e819d42a09992b5dd34dd8734", "ee8c698af6f5414c8b451fa4306f723a", "5260d6b0d9474aa692f27372e0aad11e", "11edf11d73d04a7998bc4d2db231dc2c", "9639e7bf9d27495ebb4215e3409098da", "0425f182ddcf424e899e522f7c20ad6f" ] }, "id": "9ENTzoh4Sp-P", "outputId": "9d290f71-25a1-4d30-dc13-008196352394" }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e81d3629e4e24f0babe7bfef1c5c66c1", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Reading data/reinartz_tep/df.csv: 0%| | 0/5600000 [00:00