{ "cells": [ { "cell_type": "markdown", "id": "0e78e9a7", "metadata": {}, "source": [ "# Results of anomaly detection using STGAT-MAD" ] }, { "cell_type": "code", "execution_count": 2, "id": "21763f12-3752-43b5-8f89-e9e131d3c979", "metadata": {}, "outputs": [], "source": [ "from ice.anomaly_detection.datasets import AnomalyDetectionRiethTEP\n", "from ice.anomaly_detection.models import STGAT_MAD\n", "from sklearn.preprocessing import StandardScaler\n", "import numpy as np\n", "import pandas as pd" ] }, { "cell_type": "markdown", "id": "67244937-7e66-4f90-82e4-a9d4e634cd08", "metadata": {}, "source": [ "Download the dataset." ] }, { "cell_type": "code", "execution_count": 3, "id": "c87e9ba4-4dc4-447b-91e1-df591298e756", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "16ec0e4a46ba4b91b67126185a088af7", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Reading data/rieth_tep/df.csv: 0%| | 0/15330000 [00:00