{ "cells": [ { "cell_type": "markdown", "id": "f2da72a3-830f-4a34-b767-230ed0dbf154", "metadata": {}, "source": [ "# Tutorial on remaining useful lifetime estimation task" ] }, { "cell_type": "markdown", "id": "e3de787a-3db3-47c0-a1c6-a2b36cc6586f", "metadata": {}, "source": [ "Importing libraries." ] }, { "cell_type": "code", "execution_count": null, "id": "0d2bf80e-d11f-4c3d-ac75-e4f0cfd418f6", "metadata": { "scrolled": true }, "outputs": [], "source": [ "from ice.remaining_useful_life_estimation.datasets import RulCmapss\n", "from ice.remaining_useful_life_estimation.models import LSTM\n", "\n", "import pandas as pd\n", "import numpy as np\n", "import torch\n", "from tqdm.auto import trange\n" ] }, { "cell_type": "markdown", "id": "41bd9f60-51bf-4bb8-adc8-33a6abf923a1", "metadata": {}, "source": [ "Initializing model class and train/test data split" ] }, { "cell_type": "code", "execution_count": 2, "id": "814ba92e-e394-49a4-ac06-7b68361cf078", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Downloading C-MAPSS: 100%|██████████| 29.3M/29.3M [00:07<00:00, 4.10MB/s]\n", "Extracting C-MAPSS/fd1_test.csv: 9.77MB [00:00, 10.3GB/s] \n", "Extracting C-MAPSS/fd1_train.csv: 9.77MB [00:00, 10.3GB/s] \n", "Extracting C-MAPSS/fd2_test.csv: 19.5MB [00:00, 2.28GB/s] \n", "Extracting C-MAPSS/fd2_train.csv: 29.3MB [00:00, 1.14GB/s] \n", "Extracting C-MAPSS/fd3_test.csv: 9.77MB [00:00, 5.14GB/s] \n", "Extracting C-MAPSS/fd3_train.csv: 9.77MB [00:00, 5.14GB/s] \n", "Extracting C-MAPSS/fd4_test.csv: 19.5MB [00:00, 1.37GB/s] \n", "Extracting C-MAPSS/fd4_train.csv: 29.3MB [00:00, 907MB/s] \n", "Reading data/C-MAPSS/fd1_train.csv: 100%|██████████| 20631/20631 [00:00<00:00, 414000.30it/s]\n", "Reading data/C-MAPSS/fd2_train.csv: 100%|██████████| 53759/53759 [00:00<00:00, 531391.39it/s]\n", "Reading data/C-MAPSS/fd3_train.csv: 100%|██████████| 24720/24720 [00:00<00:00, 496056.24it/s]\n", "Reading data/C-MAPSS/fd4_train.csv: 100%|██████████| 61249/61249 [00:00<00:00, 539069.75it/s]\n", "Reading data/C-MAPSS/fd1_train.csv: 100%|██████████| 20631/20631 [00:00<00:00, 449997.33it/s]\n", "Reading data/C-MAPSS/fd2_train.csv: 100%|██████████| 53759/53759 [00:00<00:00, 528800.50it/s]\n", "Reading data/C-MAPSS/fd3_train.csv: 100%|██████████| 24720/24720 [00:00<00:00, 496034.88it/s]\n", "Reading data/C-MAPSS/fd4_train.csv: 100%|██████████| 61249/61249 [00:00<00:00, 532046.23it/s]\n", "Reading data/C-MAPSS/fd1_test.csv: 100%|██████████| 13097/13097 [00:00<00:00, 477747.14it/s]\n", "Reading data/C-MAPSS/fd2_test.csv: 100%|██████████| 33991/33991 [00:00<00:00, 494267.82it/s]\n", "Reading data/C-MAPSS/fd3_test.csv: 100%|██████████| 16598/16598 [00:00<00:00, 520427.44it/s]\n", "Reading data/C-MAPSS/fd4_test.csv: 100%|██████████| 41214/41214 [00:00<00:00, 523441.82it/s]\n", "Reading data/C-MAPSS/fd1_test.csv: 100%|██████████| 13097/13097 [00:00<00:00, 505412.69it/s]\n", "Reading data/C-MAPSS/fd2_test.csv: 100%|██████████| 33991/33991 [00:00<00:00, 509017.18it/s]\n", "Reading data/C-MAPSS/fd3_test.csv: 100%|██████████| 16598/16598 [00:00<00:00, 512334.66it/s]\n", "Reading data/C-MAPSS/fd4_test.csv: 100%|██████████| 41214/41214 [00:00<00:00, 526743.49it/s]\n" ] } ], "source": [ "dataset_class = RulCmapss()\n", "\n", "data, target = dataset_class.df[0], dataset_class.target[0]\n", "test_data, test_target = dataset_class.test[0], dataset_class.test_target[0] " ] }, { "cell_type": "markdown", "id": "767c37e2-1750-46d5-9cd7-f628e7322305", "metadata": {}, "source": [ "Training" ] }, { "cell_type": "code", "execution_count": 3, "id": "f9bd5cb4-3cbd-48f2-bb70-8154f2a8e051", "metadata": { "scrolled": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Creating sequence of samples: 100%|██████████| 100/100 [00:00<00:00, 33444.73it/s]\n", "Creating sequence of samples: 100%|██████████| 100/100 [00:00<00:00, 33444.73it/s]\n", "Creating sequence of samples: 100%|██████████| 100/100 [00:00<00:00, 33562.49it/s]\n", "Creating sequence of samples: 100%|██████████| 100/100 [00:00<00:00, 33447.40it/s]\n", "Creating sequence of samples: 100%|██████████| 100/100 [00:00<00:00, 33444.73it/s]\n", "Creating sequence of samples: 100%|██████████| 100/100 [00:00<00:00, 33450.07it/s]\n", "Creating sequence of samples: 100%|██████████| 100/100 [00:00<00:00, 33442.07it/s]\n", "Creating sequence of samples: 100%|██████████| 100/100 [00:00<00:00, 50159.10it/s]\n", "Creating sequence of samples: 100%|██████████| 100/100 [00:00<00:00, 33447.40it/s]\n", "Creating sequence of samples: 100%|██████████| 100/100 [00:00<00:00, 33444.73it/s]\n", "100%|██████████| 5/5 [02:55<00:00, 35.06s/it]\n" ] } ], "source": [ "metrics = []\n", "for i in trange(5): # 5\n", " torch.random.manual_seed(i)\n", " model_class = LSTM(\n", " window_size=32,\n", " batch_size= 64,\n", " lr=1e-4,\n", " num_epochs=35,\n", " verbose=False,\n", " device='cuda'\n", " )\n", " model_class.fit(data, target)\n", " metrics.append(model_class.evaluate(test_data, test_target))\n", "\n" ] }, { "cell_type": "markdown", "id": "5e07fdd0-6e8e-4dfa-bdab-c5d5fc82c5a7", "metadata": {}, "source": [ "Printing metric" ] }, { "cell_type": "code", "execution_count": 6, "id": "1f7bfec5-ce83-4d6a-883e-919f28dfa734", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "rmse: 14.417728 ± 0.149395\n", "cmapss_score: 38126.871653 ± 4720.122718\n" ] } ], "source": [ "rmse = []\n", "cmapss_score = []\n", "for metrics_i in metrics:\n", " rmse.append(metrics_i[\"rmse\"])\n", " cmapss_score.append(metrics_i[\"cmapss_score\"])\n", "\n", "print(f'rmse: {np.mean(rmse):.6f} ± {2*np.std(rmse):.6f}')\n", "print(f'cmapss_score: {np.mean(cmapss_score):.6f} ± {2*np.std(cmapss_score):.6f}')" ] }, { "cell_type": "markdown", "id": "06ef3651-5d0d-4e32-8eed-f16e88c05608", "metadata": {}, "source": [ "Parameter esimation" ] }, { "cell_type": "code", "execution_count": 5, "id": "eb4521bd-4d21-4d1e-9f38-60ed4169445b", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(944129, (0.9755877789258957, 0.45680200297600426))" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model_class.model_param_estimation()" ] }, { "cell_type": "code", "execution_count": null, "id": "f1804cd0-f8fc-4f6e-8fba-e74da43dec6c", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.9" } }, "nbformat": 4, "nbformat_minor": 5 }