Results of anomaly detection using GSL-GNN#
from ice.anomaly_detection.datasets import AnomalyDetectionRiethTEP
from ice.anomaly_detection.models import GSL_GNN
from sklearn.preprocessing import StandardScaler
import numpy as np
import pandas as pd
Download the dataset.
dataset = AnomalyDetectionRiethTEP()
Normalize the data.
scaler = StandardScaler()
dataset.df[dataset.train_mask] = scaler.fit_transform(dataset.df[dataset.train_mask])
dataset.df[dataset.test_mask] = scaler.transform(dataset.df[dataset.test_mask])
Create the GNN model.
model = GSL_GNN(
window_size=32,
num_epochs=30,
device='cuda',
verbose=True,
val_ratio=0.1,
save_checkpoints=True,
threshold_level=0.98
)
Load the checkpoint.
model.load_checkpoint('gnn_anomaly_detection_epoch_30.tar')
Evaluate the model on the test data.
metrics = model.evaluate(dataset.df[dataset.test_mask], dataset.target[dataset.test_mask])
metrics
{'accuracy': 0.8517518472906404,
'true_positive_rate': [0.82365725],
'false_positive_rate': [0.019373853211009175]}