Results of anomaly detection using STGAT-MAD#
from ice.anomaly_detection.datasets import AnomalyDetectionRiethTEP
from ice.anomaly_detection.models import STGAT_MAD
from sklearn.preprocessing import StandardScaler
import numpy as np
import pandas as pd
Download the dataset.
dataset = AnomalyDetectionRiethTEP()
Normalize the data.
scaler = StandardScaler()
dataset.df[dataset.train_mask] = scaler.fit_transform(dataset.df[dataset.train_mask])
dataset.df[dataset.test_mask] = scaler.transform(dataset.df[dataset.test_mask])
Create the GNN model.
model = STGAT_MAD(
window_size=32,
num_epochs=30,
device='cuda',
verbose=True,
val_ratio=0.1,
save_checkpoints=True,
threshold_level=0.98
)
Load the checkpoint.
model.load_checkpoint('stgat_anomaly_detection_epoch_30.tar')
Evaluate the model on the test data.
metrics = model.evaluate(dataset.df[dataset.test_mask], dataset.target[dataset.test_mask])
metrics
{'accuracy': 0.861279659277504,
'true_positive_rate': [0.8352755],
'false_positive_rate': [0.019435206422018347]}